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Abstract. We investigate in detail the qualitative behaviour of the class of Bianchi type B
spatially homogeneous cosmological models in which the matter content is composed of two non-
interacting components; the first component is described by a barotropic fluid having a gamma-law
equation of state, whilst the second is a non-interacting scalaxfieith an exponential potential

V(¢) = A€, In particular, we study the asymptotic properties of the models both at early and
late times, paying particular attention to whether the models isotropize (and inflate) to the future,
and we discuss the genericity of the cosmological scaling solutions.

PACS numbers: 9880H, 0420J

1. Introduction

Scalar field cosmology is of importance in the study of the early Universe and particularly
in the investigation of inflation (during which the universe undergoes a period of accelerated
expansion [1,2]). One particular class of inflationary cosmological model are those with
a scalar field and an exponential potential of the fdrp) = Ae?, whereA andk are
non-negative constants. Models with an exponential scalar field potential arise naturally in
alternative theories of gravity, such as, for example, scalar-tensor theories.

Scalar-tensor theories of gravitation, in which gravity is mediated by a long-range scalar
field in addition to the usual tensor fields present in Einstein’s theory, are perhaps the most
natural alternatives to general relativity (GR). In the simplest Brans—Dicke theory of gravity
(BDT [3]), a scalar fieldg, with a constant coupling parametes, acts as the source for the
gravitational coupling. More general scalar—tensor theories have a non-constant parameter,
w(¢), and a non-zero self-interaction scalar potentlaipp). Observational limits on the
presentvalue aby need not constrain the valuewft early times in more general scalar-tensor
theories (than BDT). Hence, more recently there has been greater focus on the early Universe
predictions of scalar-tensor theories of gravity, with particular emphasis on cosmological
models in which the scalar field acts as a source for inflation [2,4]. BDT (and other theories
of gravity, such as, for example, more general scalar-tensor theories and quadratic Lagrangian
theories and also theories undergoing dimensional reduction to an effective four-dimensional
theory [5]), are known to be conformally equivalent to general relativity plus a scalar field
having exponential-like potentials [5, 6].
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Scalar—tensor theory gravity is currently of particular interest since such theories occur as
the low-energy limit in supergravity theories from string theory and other higher-dimensional
gravity theories [7]. Lacking a full non-perturbative formulation which allows a description of
the early Universe close to the Planck time, it is necessary to study classical cosmology prior
to the grand unified theory (GUT) epoch by utilizing the low-energy effective action induced
by string theory. To lowest order in the inverse string tension the tree-level effective action in
four dimensions for the massless fields includes the non-minimally coupled graviton, the scalar
dilaton and an antisymmetric rank-two tensor, hence generalizing GR (which is presumably
a valid description at late, post-GUT, epochs) by including other massless fields; hence the
massless bosonic sector of (heterotic) string theory reduces generically to a four-dimensional
scalar—tensor theory of gravity. As a result, BDT includes the dilaton—graviton sector of the
string effective action as a special cage= —1) [7]. String cosmology has recently been
investigated by various authors [8], and, in particular, [9] presented a qualitative analysis for
spatially flat, isotropic and homogeneous cosmologies derived from the string effective action
when a cosmological constant term is included. A discussion of how exponential potentials
arise in effective four-dimensional theories (in the so-called conformal Einstein frame) after
dimensional reduction from higher-dimensional theories such as string theory and M-theory
is given in [10].

A number of authors have studied scalar field cosmological models with an exponential
potential within GR. Homogeneous and isotropic Friedmann—Robertson—Walker (FRW)
models were studied by Halliwell [5] using phase-plane methods (see also [2]). Homogeneous
but anisotropic models of Bianchi types | and Ill (and Kantowski—-Sachs models) have been
studied by Burd and Barrow [11] in which they found exact solutions and discussed their
stability. Lidsey [12] and Aguirregabiriat al [13] found exact solutions for Bianchi type |
models, and in the latter paper a qualitative analysis of these models was also presented.
Bianchi models of types Ill and VI were studied by Feinstein ar@héz [14], in which
exact solutions were found. A qualitative analysis of Bianchi models kfita 2, including
standard matter satisfying various energy conditions, was completed by Kitada and Maeda
[15]. They found that the well known power-law inflationary solution is an attractor for all
initially expanding Bianchi models (except a subclass of the Bianchi type IX models which
will recollapse).

The governing differential equations in spatially homogeneous Bianchi cosmologies
containing a scalar field with an exponential potential exhibit a symmetry [16], and when
appropriate expansion-normalized variables are defined, the governing equations reduce to
a dynamical system, which was studied qualitatively in detail in [17]. In particular, the
guestion of whether the spatially homogeneous models inflate and/or isotropize, thereby
determining the applicability of the so-called cosmic no-hair conjecture in homogeneous scalar
field cosmologies with an exponential potential, was addressed. The relevance of the exact
solutions (of Bianchi types Ill and VI) found by Feinstein andfibz [14], which neither
inflate nor isotropize, was also considered. In a follow up paper [18] the isotropization of the
Bianchi VI, cosmological models possessing a scalar field with an exponential potential was
further investigated; in the cageé > 2, it was shown that there is an open set of initial
conditions in the set of anisotropic Bianchi Ylinitial data such that the corresponding
cosmological models isotropize asymptotically. Hence, scalar field spatially homogeneous
cosmological models having an exponential potential vilkh> 2 can isotropize to the
future. However, in the case of the Bianchi type IX models having an exponential potential
with k> > 2 the result is different in that typically expanding Bianchi type IX models do
not isotropize to the future; the analysis of [19] indicates thafif> 2, then the model
recollapses.
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Recently, cosmological models which contain both a perfect fluid description of matter and
a scalar field with an exponential potential have come under heavy analysis. One of the exact
solutions found for these models has the property that the energy density due to the scalar field
is proportional to the energy density of the perfect fluid, hence these models have been labelled
as scaling cosmologies [20, 21]. With the discovery of these scaling solutions, it has become
imperative to study spatially homogeneous Bianchi cosmologies containing a scalar field with
an exponential potential and an additional matter field consisting of a barotropic perfect fluid.
The scaling solutions studied in [20, 21], which are spatially flat isotropic models in which the
scalar field energy density tracks that of the perfect fluid, are of particular physical interest. For
example, in these models a significant fraction of the current energy density of the Universe
may be contained in the scalar field whose dynamical effects mimic cold dark matter.

In [22] the stability of these cosmological scaling solutions within the class of spatially
homogeneous cosmological models with a perfect fluid subject to the equation of state
py = (v — Dp, (wherey is a constant satisfying &< y < 2) and a scalar field with
an exponential potential was studied. It is known that the scaling solutions are late-time
attractors (i.e. stable) in the subclass of flat isotropic models [20, 21]. In [22] it was found that
the scaling solutions are stable (to shear and curvature perturbations) in generic anisotropic
Bianchi models whery < 2. However, whery > 2, and particularly for realistic matter
with y > 1, the scaling solutions are unstable; essentially they are unstable to curvature
perturbations, although they are stable to shear perturbations. Although these solutions are
unstable, since they correspond to equilibrium points of the governing dynamical system, the
Universe model can spend an arbitrarily long time near these scaling solutions, and hence they
may still be of physical importance.

In addition to the scaling solutions described above, curvature scaling solutions and
anisotropic scaling solutions are also possible. In [23] homogeneous and isotropic spacetimes
with non-zero spatial curvature were studied in detail and three possible asymptotic future
attractors in an ever-expanding universe were found. In addition to the zero-curvature power-
law inflationary solution and the zero-curvature scaling solution alluded to above, there is
a solution with negative spatial curvature where the scalar field energy density remains
proportional to the curvature, which also acts as a possible future asymptotic attractor. In
[24] spatially homogeneous models with a perfect fluid and a scalar field with an exponential
potential were also studied and the existence of anisotropic scaling solutions was also
discovered; the stability of these anisotropic scaling solutions within a particular class of
Bianchi type models was discussed.

The purpose of this paper is to comprehensively study the qualitative properties of
spatially homogeneous models with a barotropic fluid and a non-interacting scalar field with an
exponential potential in the class of Bianchi type B models (except for the exceptional case of
Bianchi VI_y,g), using the Hewitt and Wainwright formalism [25, 26]. In particular, we shall
study the generality of the scaling solutions. This paper is organized as follows. In section 2
we define the governing equations, which are modified from those developed in [25], and
discuss the invariant sets and the existence of monotonic functions. In section 3, we classify
and list all of the equilibrium points, and their local stability is discussed in section 4. We give
a detailed analysis, including heteroclinic orbits, for a subset of Bianchi typendbels in
section 5. We leave conclusions and discussion for section 6.

2. The equations

We shall assume that the matter content is composed of two non-interacting components.
The first component is a separately conserved barotropic fluid with a gamma-law equation
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of state, i.ep = (y — D)u, wherey is a constant with 0< y < 2, while the second is a
non-interacting scalar fielg with an exponential potentiaf (¢) = Ae*?, whereA andk are
positive constants (we use units in which@® = ¢ = 1). By non-interacting we mean that
the energy—momentum of the two matter components will be separately conserved.

The state of any Bianchi type B model with the above matter content can be described by
the evolution of the variables

(H,04,6,8,d,n+,¢,¢) € RS, (2.1)

where the evolution of the state variables are given as equations (5.8) and (7.8) in Wainwright
and Ellis [25] with the addition of the Klein—Gordon equation for the scalar field,

¢ +3H¢ +kV(p) = 0. 2.2)

By introducing dimensionless variables, the evolution equatiorHfaecouples and the
resulting reduced system has one less dimension [25]. Defining [17, 25]

O+ ~ & (S ~ EI
E+=_1 E:—’ A:_, A:—,
H H? H? H?2 2.3)
N v ® VAU C) o M '
+= T == = > = 352
H /6H /3H 3H
the differential equations for the quantities
X = (%, %, A, A, Ny, W, ®) € RY (2.4)
are as follows:
T =(g—2%s— 2N, (2.5)
Y =2(g —2)% — 4AN, — 43,A, (2.6)
A =2(g+3s —1DA+2(Z — N)Ny, (2.7)
A =2(qg +2%)A, (2.8)
N, = (q +2Z4)N+ + 6A, (2.9)
V= (g -2V - 3VBke?, (2.10)
P = (g +1+3iV6EkV)D, (2.11)

where a prime denotes differentiation with respect to the timehere d/dr = H. The
deceleration parameteris defined byy = — (1 + H'/H), and bothV (a curvature term) and
Q (a matter term) are obtained from first integrals:

g =2%2+25 + 33y —2Q+20% — @2, (2.12)
N =1iN2- 14, (2.13)
Q=1-V?>_92-3?2_% - N —A. (2.14)

The evolution ofQ2 is given by the auxiliary equation
Q' =Q2g —3y+2). (2.15)

The parametdr= 1/ where is the group parameter is equivalent to Wainwrightia [25].

If I < 0andA > 0 then the model is of Bianchi type MIIf / > 0 andA > 0 andN, # 0
then the model is of Bianchi type \jlI If / = 0 then the model is either Bianchi type IV or
type V. If A = 0 then the model is either a Bianchi type | or Il model.
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There is one constraint equation that must also be satisfied:
G(X)=%N-A?—Ax?2=0. (2.16)

Therefore, the state space is six dimensional; the seven evolution equations (2.5)—(2.11) are
subject to the constraint equation (2.16). We shall refer to the seven-dimensional state space
(2.4) as the=xtendedstate space.

By definition A is non-negative, which implies from equations (2.16) and (2.13)$hat
andN are also non-negative. Thus we have

A>0, ¥ >0, N > 0. (2.17)

In addition, from the physical constraifit > 0 together with equation (2.14), we find that the
state space is compact. Indeed, we have that

0< {22, 2,A% A, N, ¥, @} <1 (2.18)

Since bothA and N are bounded, we have from equation (2.13) tNatis bounded. In
equation (2.3) we take the ‘positive square root’. In principle, there exist negative and positive
values for®, but from definition (2.3) a negativé@ implies negativeH and henced < 0

for all time; i.e. the models are contracting. Since the system is invariant dnder —®,
without loss of generality we shall only consider> 0.

2.1. Invariant sets

There are a number of important invariant sets. Recall that the state space is constrained
by equation (2.16) to be a six-dimensional surface in the seven-dimensixteabdedspace.
Taking the constraint equation (2.16) into account we calculate the dimension of each invariant
set. These invariant sets can be classified into various classes according to Bianchi type and/or
according to their matter content. Some invariant sets (notably the Bianchi invariant sets) have
lower-dimensional invariant subsets. Equilibrium points and orbits occurring in each Bianchi
invariant set correspond to cosmological models of that Bianchi type. The notation used here
has been adapted from [25]. Various lower-dimensional invariant sets can be constructed by
taking the intersection of any Bianchi invariant set with the various matter invariant sets. For
example B(I) N M is a three-dimensional invariant set describing Bianchi type | models with
a massless scalar field.

An analysis of the dynamics in the invariant sgnd7 has been presented by Wainwright
and Hewitt[26]. Equilibrium points and orbits in the invariant$¢torrespond to models with
amassless scalar field; i.e. scalar field models with zero potential. These models are equivalent
to models with a stiff perfect fluid (i.e. = 2) equation of state; see [26]. Equilibrium points
and orbits in the invariant sIM can be interpreted as representing a 2-perfect-fluid model
with y» = 2 [27]. A patrtial analysis of the isotropic equilibrium points in the invariant set
S was completed by van den Hoogenal [28]. We note that the so-called scaling solutions
[21, 29, 30] are in the invariant s&ts.

The isotropic and spatially homogeneous models are found in the invariafitggis, ) U
Sy if I #0,andS(V) U S() if I = 0. In particular, the zero-curvature isotropic models are
found in the two-dimensional sétl), while the negative curvature models are found in the
three-dimensional sest (VI ,) or S(V) depending upon the value bfSee van den Hoogen
et al for a comprehensive analysis of the isotropic scaling models [23].

We note that in the invariant s@t(|) there exists the invariant sEt+ £2+ W2 < 1, A =
A = N, = ® = 0, which may be integrated directly to yield

T+22+wli=1+ geg(z’y)’]fl, ¢ = constant (2.19)
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Table 1. Bianchi invariant sets. We note th&{(l) and B*(ll) are class A Bianchi invariant sets
which occur in the closure of the appropriate higher-dimensional Bianchi type B invariant set (see
figure 1). In addition, ifl is non-negative N+ > 0 andN. < O define disjoint invariant sets
(indicated by a superscrigt in the table). Due to the discrete symmetyy—> —A, Ny — —N4,

these pairs of invariant sets are equivalent.

Bianchitype  Notation Dimension Restrictions

Bianchi | B(l) 4 A=A=N,=0
N0 2 A=, =S=A=N;,=0
Bianchi Il BE(I) 5 A=0, N+ >00rN+ <0
SE(N 4 A=0, £=3%2 A=3.N,:
Bianchi IV~ B*(IV) 6 =0, A>0, N+ >00rN: <0
Bianchi V B(V) 4 [=0,A>0, T, =A=N,=0
S(V) 3 [=0,A>0, Z:=%=A=N:=0
Bianchi VI,  B(VIy) 6 <0, A>0
S(VIy) 4 <0, A>0, 352+/E =0, N+=A=0
SE(N 5 I=-1 A>0 32— =0, A=3:Ns+
Bianchi VIl, BVIl,) 6 >0, A>0 Ny>00rNs <0
ST, 3 >0, A>0 %,=5%=A=0 N2=[A>0

Table 2. Matter invariant sets.

Matter content Notation Dimension Restrictions

Scalar field S 5 Q=0;v#£0,®#0
Massless scalar field M 4 Q=0v#£0,6=0
Vacuum % 3 Q=0,v=0,=0
Perfect fluid + scalar field FS 6 Q#AOW #0,9#0
Perfect fluid + massless scalar field FM 5 Q#AOV#£0,0=0
Perfect fluid F 4 QALY =0,=0

wherert is the time parameter. This solution asymptotes into the past towards the paraboloid
K (section 3.2.1), and asymptotes to the future towards the pint This solution belongs
to the matter invariant sef M, asymptoting into the past towards the sét

2.2. Monotonic functions

The existence of strictly monotonic functiong8(X) : R" — R, onany invariant sef, proves
the non-existence of periodic or recurrent orbitsSiand can be used to provide information
about the global behaviour of the dynamical syster$i {see theorem 4.12 in [25] for details).
Hewitt and Wainwright found a number of monotonic functions in the invariant sets of
dimension less than four in the perfect fluid case (i.e. in lower-dimensional subsets of the
perfect-fluid-invariant set) and these are summarized in an appendix in Hewitt and Wainwright
[25, 26]. However, they were not able to find a monotonic function in the full perfect-fluid-
invariant set for < y < 2.
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Table 3. Functions, their derivatives and the sets in which they are monotonic.

Function: W; (X) Derivative: W/ (X) Region of monotonicity
Wi=1+34)2-A W) =-22—q)W, Monotonically approaches zero
+3(L+T4) (202 + (2— y)Q)  inthe invariant seM U V.
1-Q— o2 —w? , . ;
Wy = —a Wy = —W2(2 - 3y) Monotonically decreasing to zero
—3(23+i) in the set(FS U FM U F)\S(I)
Q when0< y < 2.
Ws=3 Wi =—-22—-q)W3 Monotonically decreasing to zero
—A(ANy + 3+ A) in the invariant set®(1)\S(1) and B(V)\S(V).
A? , TiN: — A 4
Wy = A W, =3W, (q + 2N> Monotonically approaches zero
+ * in the invariant ses* (l11\(S U FS),

2
wheny > £.

2.3. The constraint surface

The constraint equatiofi(X) = 0 and the implicit function theorem can generally be used to
eliminate one of the variables at any point in theendedtate space provided the constraint
equation is not singular there, i.e. gtéd X)) # 0. The constraint surface is singular
for all points in the invariant set§(l), B(V) and S(VIl;) and therefore cannot be used to
eliminate one of the variables (and hence reduce the dimension of the dynamical system to
Six).

Therefore, we cannot determine the local stability of equilibrium points in theSgbts
B(V) or S(VII ;) within the six-dimensional state space, and hence we are required to determine
the local stability of these equilibrium points in tegtendedpace, due to the singular nature
of the constraint surface. This leads to further complications because of the limited use of the
stable manifold theorem. If these equilibrium points are stable ireftendedstate space,
then they are stable in the six-dimensional constrained surface. However, if these equilibrium
points are saddles in tlextendedtate space, then one cannot easily determine the dimension
of the stable manifold within the constraint surface.

3. Classification of the equilibrium points

Let us analyse the evolution equations for the matter variables, namely equations (2.10) and
(2.11) and the auxiliary equation (2.15). From equation (2.15) we find that at the equilibrium
points either

(A) Q=0, (3.1)
or
(B) g=3y-1 (3.2)

In the scalar field cased) there is no perfect fluid present. This is the scalar-field-invariant set
8. The equilibrium points and their stability will be studied in subsection 3.1. These models
include the massless scalar field case in which= 0 (V = 0), but not the vacuum case

@ = ¥ = 0 which will be dealt with as a subcase of the perfect fluid case (see below). The
equilibrium points of cas€A) include the isotropic Bianchi Vjimodels studied in [28].
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If, on the other hand, equation (3.2) is satisfied, assumingthat so thaly # 2, from
equations (2.10) and (2.11) we have that

(BD) v=0  ®=0 (3.3)
or

~/3 3y(2—
(B2) v = % ®? = % (3.4)

In case(B1), in which both equations (3.1) and (3.2) are valid, there is no scalar field present.
The perfect fluid subcase, which was studied by Hewitt and Wainwright [26], will be dealt
with in subsection 3.2. Note that from equation (2.®1} 0 is an invariant set, denoted by
M.

The final cas&€B2), in which equation (3.2) is valid and neither the scalar field nor the
perfect fluid are absent, corresponds to the scaling solutions whep. If we define

He=30°+V(P),  py=30"— V() (3.5)
then from equation (3.4) we find that

_Hetpy _ 297
T py W2+ 2

so that the scalar field ‘inherits’ the equation of state of the fluid. It can be shown that
there are exactly three equilibrium points corresponding to scaling solutions; the flat isotropic
scaling solution described in [21], and whose stability was discussed within Bianchi type VII
models in [22], and two anisotropic scaling solutions [24]. This will be further discussed in
subsection 3.3.

Hereafter, we shall assume that® y < 2. The valuey = 0 corresponds to a
cosmological constant and the model can be analysed as a scalar field model with the potential
V = Vo + A€ [31]. The valuey = 2, corresponding to the stiff fluid case, is a bifurcation
value and will not be considered further.

=7, (3.6)

Ve

3.1. Scalar field case

There are seven equilibrium points and one equilibrium set in the scalar-field-invaright set
in which Q@ = 0. The first three equilibrium points were given in [17] (wherein matter terms
were not included): they represent isotropic mod&ls £ ¥ = N = A = 0):

(1) Ps): T2y =S=A=A=N,=0,¥ = —k//6, ® = /1 —k2/6. This equilibrium
point, for whichg = —1 +4?/2 and which exists only fok? < 6, is in the Bianchi |
invariant setB(1). This point represents a flat FRW power-law inflationary model [5, 17].
The corresponding eigenvalues in the extended state space are (throughout this paper, we
shall not explicitly display the corresponding eigenvectors)

—2(6—k?), —2(6—Kk?), —(6—k?), a7
—(4—k?), —(2—k?), -12-k?), k2—3y.
(2) PF(VIl):
2
—f—A—0 i k-2
k2
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These two equilibrium points (the indices”correspond to the: values forN.), which
occur in the Bianchi VI invariant setS(VIl ,) (sinceA > 0, thenk? > 2 and therefore

[ > 0), haveg = 0. These equilibrium points represent an open FRW model [28]. The
corresponding eigenvalues in the extended state space are

23y, -1+ ?,/l@—g,

2
g Y2

(3.8)
p \/k2 — a2 = 2)1 £ \J[12 — 42 — 21 + 16/ (k2 — 2) + 1.

(2a) Ps(V):
- . (K2=2
E+=E=A=0, AZ( k2 ), +=O,
W2 2
V3K V3

This case corresponds to points (2) for= 0 and belongs to the set(V). The
corresponding eigenvalues in the extended state space are

.
o_z, 12 Y3 Je-s 2 2 o -4 @39

k
(3) P5(ll):
k2_ 2 ad 2 e
E+:—kZT16, E:3E+, A = 3X,Ns, A=0,
2 _ 2 _ — k2
N = ia‘/ (k2 —2)(k2 — 8) v 36k _ VB—k

, = ——, O =6———.
k2+16 k2 +16 k2 +16

These two equilibrium points, for whichh = 8(k? — 2)/(k? + 16) > 0, exist only for
2 < k? < 8. These two points represent Bianchi type Il models analogous to those found
in [26]. The corresponding eigenvalues are

(k% — 8) + /(132 — 32 (k2 — §) L (3.10)
3 2 +16 ) -3y + 18szl6'
(4) Ps(Vly):
2= €22 s ey azo i=2C 21)2<k2 -2
" n
N+ =0, \y:M’ szﬁm’
n n

wheren = k(I — 3) + 4l. SinceX > 0, we have that < 0 and hence this equilibrium
point occurs in the Bianchi-\/linvariant sets. The deceleration parameter is given by
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q = 21(k*—2)/[k?(1 —3)+4]] > 0, wherek? > 2, and this point corresponds to a Collins
Bianchi type V}, solution [32]. The corresponding eigenvalues are
k2 -2 k2@ -1)
—_ -3y — 65—,
[k2(1 — 3) + 4] [k2(1 — 3) + 4]

3(k2 —2y+JkZ— 22+ 81— (k2 - 2)
[k2( — 3) + 4] ’

(3.11)

3(k2 —20) +/(k2 = 2D)[(k2 — 2I) — 4L — ) (k2 — 2)]
[k2(1 — 3) + 4] '
Next let us considethe massless scalar-field-invariant set: there is one equilibrium
set which generalizes the work in [26] to include scalar fields:

T+22+wl=1, A=A=N,=d=0, U £ 0.

This paraboloid, forwhiclh = 2, generalizes the parabdlan [26] defined bys +22 = 1

to include a massless scalar field, and represents Jacobs’ Bianchi type | non-vacuum
solutions [32]. However, the eigenvalues are considerably different from those found in
[26], and so we list them all here (the variables which define the subspaces in which the
corresponding eigendirections reside are included below in curly braces):

21+3)£+35], 0, 0,

A, N, ¥, 3 DI SV}

{A, N} { b } (3.12)
32-y).  41+3), 3VE(WE+KY)
(T4, 5,0} {Z., 2, A, 0} (S, ®).

3.2. Perfect fluid casel = & =0

As mentioned earlier, the perfect-fluid-invariant $ein which v = & = 0 was studied by
Hewitt and Wainwright [26]; hence this subsection generalizes their results by including a
scalar field with an exponential potential. We shall use their notation to label the equilibrium
points/sets. There are five such invariant points/sets. In all of these cases the extra two
eigenvalues associated withand® are (respectively)

—%(2— y) <0, %y > 0. (3.13)
(1) P):
Y =Y=A=A=N,=V=0=0.

This equilibrium point, for which2 = 1, is a saddle fo§ <y <2inF[26] (andis a
sinkforO< y < %), which corresponds to a flat FRW model.
(2) PEQ):

T, =-43y -2, ¥ =332 A =X,Ny,
A =0, Ne==£3/By —22-1y), v=0o=0.

This equilibrium point, for whiclf2 = 1—36(6— y), is a saddle in the perfect-fluid-invariant
set [26].



Scalar field cosmologies with barotropic matter 4045

(3) P(VIn):
. =-3By -2, ¥ =-3%%/1, A =0,

- 9
A=—-——"By -2)2- N,=V¥ =0&=0.
16(3/ )(2—y),

SinceX > 0 andA > 0, this equilibrium point occurs in the Bianchi-MInvariant set
and corresponds to the Collins solution [32], wh&re= %(2 —y)+ 4—31(3)/ —2) (and
thereforeg <y <2(-1-1)/(3-1 andsd < —1). In [26] this was a sink itF, but
is a saddle in the extended state space due to the fact that the two new eigenvalues have
values of different sign.
There are also two equilibrium sets, which generalize the work in [26] to include scalar
fields:
(4) £
Y= —%.(1+3%,), A =0, A=(1+3X,)3
N: = £/A+Z)[(A+2s) — 3%4], vU=ao=0.
For this set2 = 0. The local sinks in this set occur when [26]
(a) I < 0 (Bianchi type V),) for —%(3;/ -2 <y <l/B-Dandl > -3y —2)/(2—-
y) <0,
(b) I = 0 (Bianchi type IV) for—3(3y — 2) < =, <0,
(c) I > 0 (Bianchi type VI},) for —3(3y — 2) < =, < 0.
The additional two eigenvalues for the full system are

1-23., —2(1+%,). (3.14)
Finally, let us considethe massless scalar-field-invariant SEM:
(5) K:
T+3x2=1, A=A=N,=d=W=0.

This parabola, forwhich = 2, is the special case by, for which¥ = 0 and corresponds

to the parabol#C in [26]. However, the eigenvalues are considerably different from those
found in [26] and so we list them all here (the variables define the subspaces in which the
corresponding eigendirections reside are included below in curly braces):

2[1+%)+V3S], O, 0. 32-y), 41+%,), 3
{A, Ni) {(Z+.Z} (¥} (3. %) (3. Z,4) (o)

We include in table 4 the equilibrium points/sets and corresponding eigenvalues as listed
in [26].

(3.15)

3.3. Scaling solutions

Defining

[3y 2_3r@2—vy)
Ye=—,/=-= (O] _ A

and recalling that O< y < 2, there are three equilibrium points corresponding to scaling
solutions. Because the scalar field mimics the perfect fluid with the exact same equation of state
(v = y) at these equilibrium points, one may combine these two ‘fluids’pyja= p, + p,
Wior = Mo + 14y Pror = (¥ — Dyor; therefore, all of these equilibrium points will correspond
to exact perfect fluid models analogous to the equilibrium points found in [26].

The flat isotropic FRW scaling solution [29, 30]:
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(1) Fs(:
S.=Y=A=A=N,=0, U= Wy, O = Py

The eigenvalues for these points in the extended space, for whiehl — 3y /k? (and
thereforek? > 3y) are

—3@2-vy), -32-1y), 3y — 4, 3y -2

3@y =2, -32-») £ 2 -y)@2-9y +24/12). G40
There are two anisotropic scaling solutions:
(2) Asll):
T, =-43y -2, ¥ =3%2 A = TNy, A=0,

Ne==£3/By —22-y), U= Wy, O = Py,

The eigenvalues for these points, for whigh = 1—36(6 — y) — 3y/k? (and therefore
k? > 16y/[6 — y)), are

HEE) -32-y),
3
—3l@2=-
4[( 7 (3.18)
y(6—1y) 16y
i\/@— y)?— 32— y){2<3y -2+ T(kz - m) + El} ]
where
y(6—y) 16y \1° y(6—y) 16y
(3) As(Vlp):
. =—-3@y —2), ¥ = -3%?/1, A =0,
. 9
A:—E(Z—y)(:g]/—Z), N+=0,\I’=‘-Ifs, CDZCDS

These points occur in the Bianchi-Minvariant set{ < 0 sinceX > 0) for which
3
Q=3{R-y)+ 5@ -2 -3y/k
(and therefore-1=1 < (2 — y)/(By — 2) andk? > 4y/[(2 — y) + (3y — 2)/I]) and

correspond to the Collins Bianchi Y berfect fluid solutions [32]. The eigenvalues for
these equilibrium points are

oyt fompr—a@y 22 2L+
—4[<2 y)i\/(Z V)P - 4Gy =2 (3y—2+1)}’

3
—Z[@ - (3.19)
3y 2—y 1
_ 2 __ _ _ _ —_
i\/(Z y)E=(2 J/)[47/<1 k2>+(3y 2)<3y—2+l)i Ezﬂ
where

E;, =

Il
|
N
<
//
'_\
|
x|
N
N~
|
—
w
3
|
N
p—
N
SN
| |
<
+
~I
N~
[
N
|
H
N
=~
NN
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4. Stability of the equilibrium points and some global results

The stability of the equilibrium points listed in the previous section can be easily determined
from the eigenvalues displayed. Often the stability can be determined by the eigenvalues in
the extended state space, otherwise the constraint must be utilized to determine the stability in
the six-dimensional state space (i.e. within the constraint surface). In the cases in which
this is not possible, we must analyse the eigenvalues in the extended seven-dimensional
state space, and the conclusions that can be drawn are consequently limited. Employing
local stability results and utilizing the monotonic functions found in table 3, we are able
to prove some global results. In the absence of monotonic functions, and in the same
spirit as [25, 26], we conjecture plausible results which are consistent with the local results
and the dynamical behaviour on the boundaries and which are substantiated by numerical
experiments.

4.1. Thecas& =0

If Q@ = 0 and® = 0, then the functiori¥; in table 3 approaches zero monotonically. The
existence of the monotonic functidif; implies that the global behaviour of models in the
setM UV can be determined by the local behaviour of the equilibrium point&fiv V.
Consequently, a portion of the equilibrium sé&tsand X, (corresponding to local sources)
represent the past asymptotic states, while the future asymptotic state is represebteut by
in the case of Bianchi types | and Il, by a point &n

Therefore, all vacuum models and all massless scalar field models are asymptotic to the
past to a Kasner state, and are asymptotic to the future either to a plane-wave solution (Bianchi
types IV, VI, and VII,) or to a Kasner state (Bianchi types | and II) or to a Milne state (Bianchi
type V).

If @ = 0and® # 0, then the models only contain a scalar field. It was proven in [15]
that all Bianchi models evolve to a power-law inflationary state (representéyd ) when
k? < 2. If k> > 2, then, as was shown in [28], a subset of Bianchi models of types V apd VI
evolve towards negatively curved isotropic models represented by @gai(\9 andPSi Ml ).
In[18] it was shown that whek? > 2 the future state of a subset of Bianchi typg ¥blutions
is represented by the poiis(VI,). It can be seen here that the future state of a subset of
Bianchi type Il models is represented by the pdi’gi(ll).

Therefore, all scalar field models witd = 0 evolve to a power-law inflationary state if
k? < 2. If k2 > 2, then the future asymptotic state for all Bianchi type 1V, V and,\iodels
is conjectured to be a negatively curved, isotropic model and the future asymptotic state for
all Bianchi type V}, models is conjectured to be the Feinsteir@kz anisotropic scalar field
model [14]. If 2 < k? < 8, then the future asymptotic state for all Bianchi type Il models is
the anisotropic Bianchi type Il scalar field model, and3f> 8 then the future asymptotic
state is that of a Kasner model. If2 k? < 6, then the Bianchi type | models approach a
non-inflationary, isotropic (i.e. the poils(1)); if k> > 6, then they evolve to a Kasner state
in the future.

2
4.2. Thecas® # 0,0< y < 3

If @ #0and 0< y < % then the functionW, in table 3 is monotonically decreasing to
zero. Therefore, we conclude that the omega-limit set of all non-exceptional orbits (i.e. those
orbits excluding equilibrium points, heteroclinic orbits, etc) of the dynamical system (2.5)—
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(2.11) is a subset of (I). This implies that all non-exceptional models with+ 0 evolve
towards the zero-curvature spatially homogeneous and isotropic modg($)iand hence
isotropize to the future. In [23], it was shown that the zero-curvature spatially homogeneous
and isotropic models evolve towards the power-law inflationary model, represented by the
point Ps(l) whenk? < 3y or towards the isotropic scaling solution, represented by the point
Fs(), whenk? > 3y. Using Wi, we also conclude that the past asymptotic state(s) of all
non-exceptional models (including modelssifi)) is characterized b = 0. In other words,
matter is dynamicallynimportantas these models evolve to the past. It was shown in [23]
that all models evolve in the past to some portioriCadr K (the Kasner models) which are
local sources.

43. Thecas€ #0,5 <y <2
The following table lists the local sinks f(§r< y < 2.

Table 5. This table lists all of the sinks in the various Bianchi invariant set%fot y <2 A
subset ofC y, acts as a source for all Bianchi class B models.

Sink Bianchi type k Other constraints
Ps(l) I <2
Ps(VII )8 | k2=
Ps(VI_1) 11l K>2 y > k2/ (k2 + 1), l=-1
LEVIZD) 11} All y > 1, Ty =—1
Ps(V) \Y K>2
Ps(V1p) Vi, K>2 y > 2k%(A —1)/[k%(1 — 3) + 4]
LEVIL Vi, All Y>3 < -3
4y -8y -2
As(VI VI k2> I —=
sV " Zle—pr@ -2/ 'S T2-y
k2
P VI VI K2>2 I>————for2<k?< 4
S( n) h = > 4(/(2—2)(4—](2) < X
k2

! fork? > 4

S Ak =202 — 4

@1n this caseV+ = 0 (i.e. Ps = Psi) and in fact corresponds to a Bianchi | model.

The functionWs is monotonically decreasing to zero&(1)\S(1) and B(V)\S(V). This
implies that there do not exist any periodic or recurrent orbits in these sets and, furthermore,
the global behaviour of the Bianchi type | and V models can be determined from the local
behaviour of the equilibrium points in these sets. We conjecture that there do not exist any
periodic or recurrent orbits in the entire phase space/for % whence it follows that all
global behaviour can be determined from table 5.

We note that a subset d@f,, with (1 +¥,)2 > 3%, ¥ > —+/6/k acts as a source
for all Bianchi class B models. Fd® < 2, Ps(l) is the global attractor (sink). From
table 5 we see that there are unique global attractors (both past and future) in all invariant
sets and hence the asymptotic properties are simple to determine. The sinks and sources for a
particular Bianchi invariant set, which may appear in that invariant set or on the boundary
corresponding to a (lower-dimensional) specialization of that Bianchi type, can be easily
determined from table 5 and figure 1 which lists the specializations of the Bianchi class B
models [33].
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Figure 1. Specialization diagram for Bianchi class B models obtained by letting a non-zero
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The most general models are those of Bianchi typgsavitl VII,. The Bianchi type VIj
models are of particular physical interest since they contain open FRW models as special cases.
From table 5 and figure 1 we argue that generically these models (with a scalar field) isotropize
to the future, a result which is of great significance. The Bianchi typenvidels are also of
interest since they contain a class of anisotropic scaling solutions that act as attractors for an
open set of Bianchi type B models. We note that generically Bianchi typenéddels do not
isotropize fork? > 2.

5. Intermediate behaviour and the invariant setS(VI )

It is also of interest to determine the intermediate behaviour of the models. In order to do
this, we need to investigate the saddles, determine the dimension of their stable submanifolds,
and construct possible heteroclinic sequences. This could then be used, in conjunction with
numerical work, to establish the physical properties of the models. For example, we could
investigate whetheintermediate isotropizatioman occur in Bianchi type Vjl models [34].
There are many different cases to consider depending upon the various bifurcation values and
the particular Bianchi invariant set under investigation. As an example, we shall study the
heteroclinic sequences in the four-dimensional invarians6ét,,), because it illustrates the
method and because such a study emphasizes the importance of anisotropic scaling solutions.
The subspacs(VI,), which arises from the restrictio’. = A = 0and £2+[X =0
[25] is, in fact, the class of diagonal Bianchiinodels and is four dimensional (and was
shown in [24] to illustrate the existence and importance of the anisotropic scaling solutions).
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From the above restrictions, the system of equations (2.5)—(2.11) now reduce to

X, =(g -2 +3IA (5.1)
A =2(g+25)A (5.2)
V' = (g —2)¥ — 3V/6kd? (5.3)
Y = (g+1+3iV6kV)o. (5.4)

We note that the constraint equation (2.16) is automatically satisfied.
The equilibrium points of the system are a subset of those presented in section 3 and we
present those that belong to this subspace and their corresponding eigenvalues in table 6:
From the eigenvalues in table 5 we can study the stability of the equilibrium points and
the qualitative behaviour in this four-dimensional subspace. The bifurcation values leading to
a change in the asymptotic behaviour are

» KBy -2
k2 —3y)
We can see that the possible future asymptotic behaviour is given by points containing a

scalar field, either alone or together with a perfect fluid component in the case of the anisotropic
scaling solution. These possible future asymptoticsPaie), Ps(V1,) andAg(VIy,).

k=2, k% =6, k% =3y, 52 =3y —2,

5.1. Heteroclinic sequences

The stable and unstable manifolds of the saddle equilibrium points provide a skeleton of special
orbits that play a significant role in determining the dynamics of the models (and in particular,
their intermediate states) [34]. A (finite) heteroclinic sequence is a set of equilibrium points
Eo, E1, ..., E,, whereEgis alocal sourcek, is alocal sink and the rest are saddles, such that
there is a heteroclinic orbit which joins;_; to E; for eachi = 1, ..., n [25]. Below are the
heteroclinic orbits in the class 6f(VI,) models for different parameter ranges. Equilibrium
points in parentheses stand for optional intermediate points. We recaifthatd! /(I — 3)

ands3 = k*(3y — 2)/(k? — 3y). Finally, whenk? > 6 the Kasner-like ring splits intti ;[ A]
(sources) and ([ B] (saddles).

k? <2 <3y

K £ — Ps(l
0 s2<3y—2 { M= Ly = Psl)

Km — P() — LE — Ps())

i) 3y —2 < {ICM — LE — P(VI) — Ps())

Ky — P()— PV, — Ps()

2 <k?<3y

Kpm — P() — Ps(l) — P(VIly)

i 2.3y -2
M 57 <3y K — P() = £F — PEVILY)

Km — LE— (P(VIL) — PENVILY,)
(i) 3y —2<s? Km — P() — P(VI,) — PE(VIlY)
Ky — P() — Ps(l) — PEVIly)
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2<3y <k’<6

0] s2<3y—2<s§

(i) 3y—2<s2<sg

(iii) 3;/—2<s§<s2

3y <6 <k?

0] s2<3y—2<s§

(i) 3y—2<s2<s§

(iii) 3y—2<s§<s2

Kam — Ps(l) — (Fs()) — P5(VIly)
K — (P()) — LE — PEVII,)
Ky — P() — Fs(l) — PE(VIl,)

Km — Li — (P(VIR) — PF(VIly,)
Kam = Ps() - (Fs(1)) - P3(VIl ;)
Ky — P() — P(VIl,) — PEVII)
Kpm — P(I) — Fs(l) — PE(VIl,)

K — LE — PENVIL,) — As(VIy)
Kpm — L — PV — As(V1y)
Km — Ps(l) — PEWNVILL) — As(V1y,)
Ky = Ps() > Fs() = As(Vly)
Ky = P() = P(VIly) = Ags(VI,)
Kuy— P(l) — Fs(l) > As(Vly)

KmlA] = (KulBD) — (P()) — L — P5(VIly)
KulA] = (Ku[B]) — P() — Fs(l) — PE(VIly)

KmlA]l = (Km[B]) — L — (P(V1,) — PF(VIl )
Km[A] = (Kpu[B]) — P() — P(VI) — PE(VIlY)
KulA] = (Kpu[B]) — P() — Fs() — PE(VIly)
KulA] = (Ku[B]) — £F — PF(VIL) — As(Vly)
KulA] = (Kpu[B]) — L£E — P(VI,) — As(Vly)
KmlA] — (Km[BD) — P(1) — P(VI,) — As(Vly)
KmlA] = (Ku[BD = P(1) — Fs() = As(Vly).

Km ————— Ps()

- L - PE(VIIL)

Y

PVIL) ——— As(VI)

<
S

> P Fs(I)

Figure 2. Heteroclinic sequences ii(Vl,) fors < 3y < k> < 6and ¥ — 2 < s2 < 52,

indicating the skeleton of orbits defined by the stable and unstable manifolds of the saddle points.

Note that the anisotropic scaling solutigiy (V1) is a stable attractor.
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Figure 2 can be used to construct sequences of orbits joining equilibrium points starting
at the past attractd€ », and ending at the future attractdi(VI1,). For each sequence there
will be a family of orbits that shadow this sequence in the state space.

6. Conclusion

In this paper we have discussed the qualitative properties of Bianchi type B cosmological
models containing a barotropic fluid and a scalar field with an exponential potential. The most
general models are those of type,Vivhich include the anisotropic scaling solutions, and
those of type VI}, which include the open FRW models.

In cases in which we have been able to find monotonic functions we have been able to
prove global results. Otherwise, based on the local analysis of the stability of equilibrium
points and the dynamics on the boundaries of the appropriate state space, we have presented
plausible global results (this is similar to the analysis of perfect fluid models in [25, 26] in
which no monotonic functions were found in the Bianchi type VI and VIl invariant sets). In
all cases, however, our results are further justified by numerical experimentation.

Let us summarize the main results:

¢ All models withk? < 2 asymptote toward the flat FRW power-law inflationary model
[5,17], corresponding to the global attractBg(l), at late times; i.e. all such models
isotropize and inflate to the future.

e Fs(l) is a saddle and hence the flat FRW scaling solutions [29, 30] do not act as late-time
attractors in general [22].

e A subset ofK,, acts as a source for all Bianchi type B models; hence all models are
asymptotic in the pastto a massless scalar field analogue of the Jacobs anisotropic Bianchi
solutions.

e Fork? > 2, Bianchi type VI}, models generically asymptote towards an open FRW scalar
field model, represented by one of the local siRkéV ) or P§E (VIl ), and hence isotropize
to the future.

e Fork? > 2, Bianchi type V} models generically asymptote towards either an anisotropic
scalar field analogue of the Collins solution [32], an anisotropic vacuum solution (with
no scalar field) or an anisotropic scaling solution [24], corresponding to the local sinks
Psi(VI n), L (V1) or As(V1y), respectively (depending on the values of a given model's
parameters, see table 4 for details). These models do not generally isotropize.

e Inparticular, the equilibrium points (V1) is alocal attractor in the Bianchi-yinvariant
set and hence there is an open set of Bianchi type B models containing a perfect fluid and a
scalar field with exponential potential which asymptote toward a corresponding anisotropic
scaling solution at late times.

We should stress that our analysis and results are applicable to a variety of other
cosmological models in, for example, scalar—tensor theories of gravity (which are formally
equivalent to general relativity containing a scalar field with an exponential potential) [32, 36—
38], theories with multiple scalar fields with exponential potentials [38] and string theory
[9,39].

Infuture work we shall study spatially homogeneous models with positive spatial curvature
[40] and Bianchi models of type A [41]. However, our ultimate goal is to extend the techniques
used in this paper and study the more interesting (and physically more relevant) case of spatially
inhomogeneous models.
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