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Abstract. We investigate in detail the qualitative behaviour of the class of Bianchi type B
spatially homogeneous cosmological models in which the matter content is composed of two non-
interacting components; the first component is described by a barotropic fluid having a gamma-law
equation of state, whilst the second is a non-interacting scalar fieldφ with an exponential potential
V (φ) = 3ekφ . In particular, we study the asymptotic properties of the models both at early and
late times, paying particular attention to whether the models isotropize (and inflate) to the future,
and we discuss the genericity of the cosmological scaling solutions.

PACS numbers: 9880H, 0420J

1. Introduction

Scalar field cosmology is of importance in the study of the early Universe and particularly
in the investigation of inflation (during which the universe undergoes a period of accelerated
expansion [1, 2]). One particular class of inflationary cosmological model are those with
a scalar field and an exponential potential of the formV (φ) = 3ekφ , where3 andk are
non-negative constants. Models with an exponential scalar field potential arise naturally in
alternative theories of gravity, such as, for example, scalar–tensor theories.

Scalar–tensor theories of gravitation, in which gravity is mediated by a long-range scalar
field in addition to the usual tensor fields present in Einstein’s theory, are perhaps the most
natural alternatives to general relativity (GR). In the simplest Brans–Dicke theory of gravity
(BDT [3]), a scalar field,φ, with a constant coupling parameterω0, acts as the source for the
gravitational coupling. More general scalar–tensor theories have a non-constant parameter,
ω(φ), and a non-zero self-interaction scalar potential,V (φ). Observational limits on the
present value ofω0 need not constrain the value ofω at early times in more general scalar–tensor
theories (than BDT). Hence, more recently there has been greater focus on the early Universe
predictions of scalar–tensor theories of gravity, with particular emphasis on cosmological
models in which the scalar field acts as a source for inflation [2, 4]. BDT (and other theories
of gravity, such as, for example, more general scalar–tensor theories and quadratic Lagrangian
theories and also theories undergoing dimensional reduction to an effective four-dimensional
theory [5]), are known to be conformally equivalent to general relativity plus a scalar field
having exponential-like potentials [5, 6].
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Scalar–tensor theory gravity is currently of particular interest since such theories occur as
the low-energy limit in supergravity theories from string theory and other higher-dimensional
gravity theories [7]. Lacking a full non-perturbative formulation which allows a description of
the early Universe close to the Planck time, it is necessary to study classical cosmology prior
to the grand unified theory (GUT) epoch by utilizing the low-energy effective action induced
by string theory. To lowest order in the inverse string tension the tree-level effective action in
four dimensions for the massless fields includes the non-minimally coupled graviton, the scalar
dilaton and an antisymmetric rank-two tensor, hence generalizing GR (which is presumably
a valid description at late, post-GUT, epochs) by including other massless fields; hence the
massless bosonic sector of (heterotic) string theory reduces generically to a four-dimensional
scalar–tensor theory of gravity. As a result, BDT includes the dilaton–graviton sector of the
string effective action as a special case(ω = −1) [7]. String cosmology has recently been
investigated by various authors [8], and, in particular, [9] presented a qualitative analysis for
spatially flat, isotropic and homogeneous cosmologies derived from the string effective action
when a cosmological constant term is included. A discussion of how exponential potentials
arise in effective four-dimensional theories (in the so-called conformal Einstein frame) after
dimensional reduction from higher-dimensional theories such as string theory and M-theory
is given in [10].

A number of authors have studied scalar field cosmological models with an exponential
potential within GR. Homogeneous and isotropic Friedmann–Robertson–Walker (FRW)
models were studied by Halliwell [5] using phase-plane methods (see also [2]). Homogeneous
but anisotropic models of Bianchi types I and III (and Kantowski–Sachs models) have been
studied by Burd and Barrow [11] in which they found exact solutions and discussed their
stability. Lidsey [12] and Aguirregabiriaet al [13] found exact solutions for Bianchi type I
models, and in the latter paper a qualitative analysis of these models was also presented.
Bianchi models of types III and VI were studied by Feinstein and Ibáñez [14], in which
exact solutions were found. A qualitative analysis of Bianchi models withk2 < 2, including
standard matter satisfying various energy conditions, was completed by Kitada and Maeda
[15]. They found that the well known power-law inflationary solution is an attractor for all
initially expanding Bianchi models (except a subclass of the Bianchi type IX models which
will recollapse).

The governing differential equations in spatially homogeneous Bianchi cosmologies
containing a scalar field with an exponential potential exhibit a symmetry [16], and when
appropriate expansion-normalized variables are defined, the governing equations reduce to
a dynamical system, which was studied qualitatively in detail in [17]. In particular, the
question of whether the spatially homogeneous models inflate and/or isotropize, thereby
determining the applicability of the so-called cosmic no-hair conjecture in homogeneous scalar
field cosmologies with an exponential potential, was addressed. The relevance of the exact
solutions (of Bianchi types III and VI) found by Feinstein and Ibáñez [14], which neither
inflate nor isotropize, was also considered. In a follow up paper [18] the isotropization of the
Bianchi VIIh cosmological models possessing a scalar field with an exponential potential was
further investigated; in the casek2 > 2, it was shown that there is an open set of initial
conditions in the set of anisotropic Bianchi VIIh initial data such that the corresponding
cosmological models isotropize asymptotically. Hence, scalar field spatially homogeneous
cosmological models having an exponential potential withk2 > 2 can isotropize to the
future. However, in the case of the Bianchi type IX models having an exponential potential
with k2 > 2 the result is different in that typically expanding Bianchi type IX models do
not isotropize to the future; the analysis of [19] indicates that ifk2 > 2, then the model
recollapses.
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Recently, cosmological models which contain both a perfect fluid description of matter and
a scalar field with an exponential potential have come under heavy analysis. One of the exact
solutions found for these models has the property that the energy density due to the scalar field
is proportional to the energy density of the perfect fluid, hence these models have been labelled
as scaling cosmologies [20, 21]. With the discovery of these scaling solutions, it has become
imperative to study spatially homogeneous Bianchi cosmologies containing a scalar field with
an exponential potential and an additional matter field consisting of a barotropic perfect fluid.
The scaling solutions studied in [20, 21], which are spatially flat isotropic models in which the
scalar field energy density tracks that of the perfect fluid, are of particular physical interest. For
example, in these models a significant fraction of the current energy density of the Universe
may be contained in the scalar field whose dynamical effects mimic cold dark matter.

In [22] the stability of these cosmological scaling solutions within the class of spatially
homogeneous cosmological models with a perfect fluid subject to the equation of state
pγ = (γ − 1)ργ (whereγ is a constant satisfying 0< γ < 2) and a scalar field with
an exponential potential was studied. It is known that the scaling solutions are late-time
attractors (i.e. stable) in the subclass of flat isotropic models [20, 21]. In [22] it was found that
the scaling solutions are stable (to shear and curvature perturbations) in generic anisotropic
Bianchi models whenγ < 2

3. However, whenγ > 2
3, and particularly for realistic matter

with γ > 1, the scaling solutions are unstable; essentially they are unstable to curvature
perturbations, although they are stable to shear perturbations. Although these solutions are
unstable, since they correspond to equilibrium points of the governing dynamical system, the
Universe model can spend an arbitrarily long time near these scaling solutions, and hence they
may still be of physical importance.

In addition to the scaling solutions described above, curvature scaling solutions and
anisotropic scaling solutions are also possible. In [23] homogeneous and isotropic spacetimes
with non-zero spatial curvature were studied in detail and three possible asymptotic future
attractors in an ever-expanding universe were found. In addition to the zero-curvature power-
law inflationary solution and the zero-curvature scaling solution alluded to above, there is
a solution with negative spatial curvature where the scalar field energy density remains
proportional to the curvature, which also acts as a possible future asymptotic attractor. In
[24] spatially homogeneous models with a perfect fluid and a scalar field with an exponential
potential were also studied and the existence of anisotropic scaling solutions was also
discovered; the stability of these anisotropic scaling solutions within a particular class of
Bianchi type models was discussed.

The purpose of this paper is to comprehensively study the qualitative properties of
spatially homogeneous models with a barotropic fluid and a non-interacting scalar field with an
exponential potential in the class of Bianchi type B models (except for the exceptional case of
Bianchi VI−1/9), using the Hewitt and Wainwright formalism [25, 26]. In particular, we shall
study the generality of the scaling solutions. This paper is organized as follows. In section 2
we define the governing equations, which are modified from those developed in [25], and
discuss the invariant sets and the existence of monotonic functions. In section 3, we classify
and list all of the equilibrium points, and their local stability is discussed in section 4. We give
a detailed analysis, including heteroclinic orbits, for a subset of Bianchi type VIh models in
section 5. We leave conclusions and discussion for section 6.

2. The equations

We shall assume that the matter content is composed of two non-interacting components.
The first component is a separately conserved barotropic fluid with a gamma-law equation
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of state, i.e.p = (γ − 1)µ, whereγ is a constant with 06 γ 6 2, while the second is a
non-interacting scalar fieldφ with an exponential potentialV (φ) = 3ekφ , where3 andk are
positive constants (we use units in which 8πG = c = 1). By non-interacting we mean that
the energy–momentum of the two matter components will be separately conserved.

The state of any Bianchi type B model with the above matter content can be described by
the evolution of the variables

(H, σ+, σ̃ , δ, ã, n+, φ̇, φ) ∈ R8, (2.1)

where the evolution of the state variables are given as equations (5.8) and (7.8) in Wainwright
and Ellis [25] with the addition of the Klein–Gordon equation for the scalar field,

φ̈ + 3Hφ̇ + kV (φ) = 0. (2.2)

By introducing dimensionless variables, the evolution equation forH decouples and the
resulting reduced system has one less dimension [25]. Defining [17, 25]

6+ = σ+

H
, 6̃ = σ̃

H 2
, 1 = δ

H 2
, Ã = ã

H 2
,

N+ = n+

H
, 9 = φ̇√

6H
, 8 =

√
V (φ)√
3H

, � = µ

3H 2
,

(2.3)

the differential equations for the quantities

X = (6+, 6̃,1, Ã,N+, 9,8) ∈ R7 (2.4)

are as follows:

6′+ = (q − 2)6+ − 2Ñ, (2.5)

6̃′ = 2(q − 2)6̃ − 41N+ − 46+Ã, (2.6)

1′ = 2(q +6+ − 1)1 + 2(6̃ − Ñ)N+, (2.7)

Ã′ = 2(q + 26+)Ã, (2.8)

N ′+ = (q + 26+)N+ + 61, (2.9)

9 ′ = (q − 2)9 − 1
2

√
6k82, (2.10)

8′ = (q + 1 + 1
2

√
6k9)8, (2.11)

where a prime denotes differentiation with respect to the timeτ , where dt/dτ = H . The
deceleration parameterq is defined byq ≡ −(1 +H ′/H), and bothÑ (a curvature term) and
� (a matter term) are obtained from first integrals:

q = 262
+ + 26̃ + 1

2(3γ − 2)� + 292 −82, (2.12)

Ñ = 1
3N

2
+ − 1

3lÃ, (2.13)

� = 1−92 −82 −62
+ − 6̃ − Ñ − Ã. (2.14)

The evolution of� is given by the auxiliary equation

�′ = �(2q − 3γ + 2). (2.15)

The parameterl = 1/hwhereh is the group parameter is equivalent to Wainwright’sh̃ in [25].
If l < 0 andÃ > 0 then the model is of Bianchi type VIh. If l > 0 andÃ > 0 andN+ 6= 0
then the model is of Bianchi type VIIh. If l = 0 then the model is either Bianchi type IV or
type V. If Ã = 0 then the model is either a Bianchi type I or II model.
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There is one constraint equation that must also be satisfied:

G(X) = 6̃Ñ −12 − Ã62
+ = 0. (2.16)

Therefore, the state space is six dimensional; the seven evolution equations (2.5)–(2.11) are
subject to the constraint equation (2.16). We shall refer to the seven-dimensional state space
(2.4) as theextendedstate space.

By definition Ã is non-negative, which implies from equations (2.16) and (2.13) that6̃

andÑ are also non-negative. Thus we have

Ã > 0, 6̃ > 0, Ñ > 0. (2.17)

In addition, from the physical constraint� > 0 together with equation (2.14), we find that the
state space is compact. Indeed, we have that

06
{
62

+, 6̃,1
2, Ã, Ñ, 92,8

}
6 1. (2.18)

Since bothÃ and Ñ are bounded, we have from equation (2.13) thatN+ is bounded. In
equation (2.3) we take the ‘positive square root’. In principle, there exist negative and positive
values for8, but from definition (2.3) a negative8 implies negativeH and henceH < 0
for all time; i.e. the models are contracting. Since the system is invariant under8 → −8,
without loss of generality we shall only consider8 > 0.

2.1. Invariant sets

There are a number of important invariant sets. Recall that the state space is constrained
by equation (2.16) to be a six-dimensional surface in the seven-dimensionalextendedspace.
Taking the constraint equation (2.16) into account we calculate the dimension of each invariant
set. These invariant sets can be classified into various classes according to Bianchi type and/or
according to their matter content. Some invariant sets (notably the Bianchi invariant sets) have
lower-dimensional invariant subsets. Equilibrium points and orbits occurring in each Bianchi
invariant set correspond to cosmological models of that Bianchi type. The notation used here
has been adapted from [25]. Various lower-dimensional invariant sets can be constructed by
taking the intersection of any Bianchi invariant set with the various matter invariant sets. For
example,B(I)∩M is a three-dimensional invariant set describing Bianchi type I models with
a massless scalar field.

An analysis of the dynamics in the invariant setsV andF has been presented by Wainwright
and Hewitt [26]. Equilibrium points and orbits in the invariant setM correspond to models with
a massless scalar field; i.e. scalar field models with zero potential. These models are equivalent
to models with a stiff perfect fluid (i.e.γ = 2) equation of state; see [26]. Equilibrium points
and orbits in the invariant setFM can be interpreted as representing a 2-perfect-fluid model
with γ2 = 2 [27]. A partial analysis of the isotropic equilibrium points in the invariant set
S was completed by van den Hoogenet al [28]. We note that the so-called scaling solutions
[21, 29, 30] are in the invariant setFS.

The isotropic and spatially homogeneous models are found in the invariant setsS±(VII h)∪
S(I) if l 6= 0, andS(V) ∪ S(I) if l = 0. In particular, the zero-curvature isotropic models are
found in the two-dimensional setS(I), while the negative curvature models are found in the
three-dimensional setsS±(VII h) or S(V) depending upon the value ofl. See van den Hoogen
et al for a comprehensive analysis of the isotropic scaling models [23].

We note that in the invariant setB(I) there exists the invariant set6̃ +62
+ +92 < 1,1 =

Ã = N+ = 8 = 0, which may be integrated directly to yield

6̃ +62
+ +92 = [1 + ζe3(2−γ )τ ]−1

, ζ = constant, (2.19)
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Table 1. Bianchi invariant sets. We note thatB(I) andB±(II ) are class A Bianchi invariant sets
which occur in the closure of the appropriate higher-dimensional Bianchi type B invariant set (see
figure 1). In addition, ifl is non-negative,N+ > 0 andN+ < 0 define disjoint invariant sets
(indicated by a superscript± in the table). Due to the discrete symmetry1→−1,N+ →−N+,
these pairs of invariant sets are equivalent.

Bianchi type Notation Dimension Restrictions

Bianchi I B(I) 4 Ã = 1 = N+ = 0

S(I) 2 Ã = 6+ = 6̃ = 1 = N+ = 0

Bianchi II B±(II ) 5 Ã = 0, N+ > 0 orN+ < 0

S±(II ) 4 Ã = 0, 6̃ = 362
+, 1 = 6+N+

Bianchi IV B±(IV ) 6 l = 0, Ã > 0, N+ > 0 orN+ < 0

Bianchi V B(V) 4 l = 0, Ã > 0, 6+ = 1 = N+ = 0

S(V) 3 l = 0, Ã > 0, 6+ = 6̃ = 1 = N+ = 0

Bianchi VIh B(VIh) 6 l < 0, Ã > 0

S(VIh) 4 l < 0, Ã > 0, 362
+ + l6̃ = 0, N+ = 1 = 0

S±(III ) 5 l = −1, Ã > 0, 362
+ − 6̃ = 0, 1 = 6+N+

Bianchi VIIh B±(VII h) 6 l > 0, Ã > 0, N+ > 0 orN+ < 0

S±(VII h) 3 l > 0, Ã > 0, 6+ = 6̃ = 1 = 0, N2
+ = lÃ > 0

Table 2. Matter invariant sets.

Matter content Notation Dimension Restrictions

Scalar field S 5 � = 0;9 6= 0,8 6= 0
Massless scalar field M 4 � = 0;9 6= 0,8 = 0
Vacuum V 3 � = 0;9 = 0,8 = 0

Perfect fluid + scalar field FS 6 � 6= 0;9 6= 0,8 6= 0
Perfect fluid + massless scalar field FM 5 � 6= 0;9 6= 0,8 = 0
Perfect fluid F 4 � 6= 0;9 = 0,8 = 0

whereτ is the time parameter. This solution asymptotes into the past towards the paraboloid
K (section 3.2.1), and asymptotes to the future towards the pointP(I). This solution belongs
to the matter invariant setFM, asymptoting into the past towards the setM.

2.2. Monotonic functions

The existence of strictly monotonic functions,W(X) : Rn→ R, on any invariant set,S, proves
the non-existence of periodic or recurrent orbits inS and can be used to provide information
about the global behaviour of the dynamical system inS (see theorem 4.12 in [25] for details).

Hewitt and Wainwright found a number of monotonic functions in the invariant sets of
dimension less than four in the perfect fluid case (i.e. in lower-dimensional subsets of the
perfect-fluid-invariant set) and these are summarized in an appendix in Hewitt and Wainwright
[25, 26]. However, they were not able to find a monotonic function in the full perfect-fluid-
invariant set for23 < γ < 2.
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Table 3. Functions, their derivatives and the sets in which they are monotonic.

Function:Wi(X) Derivative:W ′i (X) Region of monotonicity

W1 ≡ (1 +6+)
2 − Ã W ′1 = −2(2− q)W1 Monotonically approaches zero

+3(1 +6+)(282 + (2− γ )�) in the invariant setM ∪ V.

W2 ≡ 1−�−82 −92

�
W ′2 = −W2(2− 3γ ) Monotonically decreasing to zero

− 1

�
(62

+ + 6̃) in the set(FS ∪ FM ∪ F)\S(I)
when 06 γ 6 2

3 .

W3 ≡ 6̃ W ′3 = −2(2− q)W3 Monotonically decreasing to zero

−4(1N+ +6+Ã) in the invariant setsB(I)\S(I) andB(V)\S(V).
W4 ≡ Ã2

N+
W ′4 = 3W4

(
q + 2

6+N+ −1
N+

)
Monotonically approaches zero
in the invariant setS±(III )\(S ∪ FS),
whenγ > 2

3 .

2.3. The constraint surface

The constraint equationG(X) = 0 and the implicit function theorem can generally be used to
eliminate one of the variables at any point in theextendedstate space provided the constraint
equation is not singular there, i.e. grad(G(X)) 6= 0. The constraint surface is singular
for all points in the invariant setsS(I), B(V) andS(VII h) and therefore cannot be used to
eliminate one of the variables (and hence reduce the dimension of the dynamical system to
six).

Therefore, we cannot determine the local stability of equilibrium points in the setsS(I),
B(V)orS(VII h)within the six-dimensional state space, and hence we are required to determine
the local stability of these equilibrium points in theextendedspace, due to the singular nature
of the constraint surface. This leads to further complications because of the limited use of the
stable manifold theorem. If these equilibrium points are stable in theextendedstate space,
then they are stable in the six-dimensional constrained surface. However, if these equilibrium
points are saddles in theextendedstate space, then one cannot easily determine the dimension
of the stable manifold within the constraint surface.

3. Classification of the equilibrium points

Let us analyse the evolution equations for the matter variables, namely equations (2.10) and
(2.11) and the auxiliary equation (2.15). From equation (2.15) we find that at the equilibrium
points either

(A) � = 0, (3.1)

or

(B) q = 3
2γ − 1. (3.2)

In the scalar field case(A) there is no perfect fluid present. This is the scalar-field-invariant set
S. The equilibrium points and their stability will be studied in subsection 3.1. These models
include the massless scalar field case in which8 = 0 (V = 0), but not the vacuum case
8 = 9 = 0 which will be dealt with as a subcase of the perfect fluid case (see below). The
equilibrium points of case(A) include the isotropic Bianchi VIIh models studied in [28].
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If, on the other hand, equation (3.2) is satisfied, assuming thatγ < 2 so thatq 6= 2, from
equations (2.10) and (2.11) we have that

(B1) 9 = 0, 8 = 0 (3.3)

or

(B2) 9 = −
√

3γ√
2k

, 82 = 3γ (2− γ )
2k2

. (3.4)

In case(B1), in which both equations (3.1) and (3.2) are valid, there is no scalar field present.
The perfect fluid subcase, which was studied by Hewitt and Wainwright [26], will be dealt
with in subsection 3.2. Note that from equation (2.11)8 = 0 is an invariant set, denoted by
M.

The final case(B2), in which equation (3.2) is valid and neither the scalar field nor the
perfect fluid are absent, corresponds to the scaling solutions whenγ > 0. If we define

µφ ≡ 1
2φ̇

2 + V (φ), pφ ≡ 1
2φ̇

2 − V (φ), (3.5)

then from equation (3.4) we find that

γφ ≡ µφ + pφ
pφ

= 292

92 +82
= γ, (3.6)

so that the scalar field ‘inherits’ the equation of state of the fluid. It can be shown that
there are exactly three equilibrium points corresponding to scaling solutions; the flat isotropic
scaling solution described in [21], and whose stability was discussed within Bianchi type VIIh

models in [22], and two anisotropic scaling solutions [24]. This will be further discussed in
subsection 3.3.

Hereafter, we shall assume that 0< γ < 2. The valueγ = 0 corresponds to a
cosmological constant and the model can be analysed as a scalar field model with the potential
V = V0 +3ekφ [31]. The valueγ = 2, corresponding to the stiff fluid case, is a bifurcation
value and will not be considered further.

3.1. Scalar field case

There are seven equilibrium points and one equilibrium set in the scalar-field-invariant setS
in which� = 0. The first three equilibrium points were given in [17] (wherein matter terms
were not included): they represent isotropic models (6+ = 6̃ = Ñ = 1 = 0):

(1) PS(I): 6+ = 6̃ = 1 = Ã = N+ = 0, 9 = −k/√6,8 =
√

1− k2/6. This equilibrium
point, for whichq = −1 + k2/2 and which exists only fork2 6 6, is in the Bianchi I
invariant setB(I). This point represents a flat FRW power-law inflationary model [5, 17].
The corresponding eigenvalues in the extended state space are (throughout this paper, we
shall not explicitly display the corresponding eigenvectors)

− 1
2(6− k2), − 1

2(6− k2), −(6− k2),

−(4− k2), −(2− k2), − 1
2(2− k2), k2 − 3γ.

(3.7)

(2) P±S (VII h):

6+ = 6̃ = 1 = 0, Ã = (k2 − 2)

k2
,

N+ = ±
√
l(k2 − 2)

k
, 9 = −

√
2√
3k
, 8 = 2√

3k
.
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These two equilibrium points (the indices ‘±’ correspond to the± values forN+), which
occur in the Bianchi VIIh invariant setS(VII h) (sinceÃ > 0, thenk2 > 2 and therefore
l > 0), haveq = 0. These equilibrium points represent an open FRW model [28]. The
corresponding eigenvalues in the extended state space are

2− 3γ, −1±
√

3i

k

√
k2 − 8

3,

−2±
√

2

k

√
k2 − 4(k2 − 2)l ±

√[
k2 − 4(k2 − 2)l

]2
+ 16l

(
k2 − 2

)2
+ k4.

(3.8)

(2a) PS(V):

6+ = 6̃ = 1 = 0, Ã = (k2 − 2)

k2
, N+ = 0,

9 = −
√

2√
3k
, 8 = 2√

3k
.

This case corresponds to points (2) forl = 0 and belongs to the setS(V). The
corresponding eigenvalues in the extended state space are

2− 3γ, −1±
√

3i

k

√
k2 − 8

3, −2, −2, 0, −4. (3.9)

(3) P±S (II ):

6+ = − k
2 − 2

k2 + 16
, 6̃ = 362

+, 1 = 6+N+, Ã = 0,

N+ = ±3

√
−(k2 − 2)(k2 − 8)

k2 + 16
, 9 = − 3

√
6k

k2 + 16
, 8 = 6

√
8− k2

k2 + 16
.

These two equilibrium points, for whichq = 8(k2 − 2)/(k2 + 16) > 0, exist only for
26 k2 6 8. These two points represent Bianchi type II models analogous to those found
in [26]. The corresponding eigenvalues are

12
k2 − 2

k2 + 16
, 6

k2 − 8

k2 + 16
, 6

k2 − 8

k2 + 16
,

3
(k2 − 8)±

√
(13k2 − 32)(k2 − 8)

k2 + 16
, −3γ + 18

k2

k2 + 16
.

(3.10)

(4) PS(VI h):

6+ = −l(k
2 − 2)

n
, 6̃ = −362

+/l, 1 = 0, Ã = 9(k2 − 2l)(k2 − 2)

n2
,

N+ = 0, 9 =
√

6k(1− l)
n

, 8 = 2
√

3
√
(k2 − 2l)(1− l)

n
,

wheren ≡ k2(l − 3) + 4l. Since6̃ > 0, we have thatl < 0 and hence this equilibrium
point occurs in the Bianchi-VIh-invariant sets. The deceleration parameter is given by
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q = 2l(k2−2)/[k2(l−3)+4l] > 0, wherek2 > 2, and this point corresponds to a Collins
Bianchi type VIh solution [32]. The corresponding eigenvalues are

6
k2 − 2l

[k2(l − 3) + 4l]
, −3γ − 6

k2(1− l)
[k2(l − 3) + 4l]

,

3
(k2 − 2l)±

√
(k2 − 2l)2 + 8l(1− l)(k2 − 2)

[k2(l − 3) + 4l]
, (3.11)

3
(k2 − 2l)±

√
(k2 − 2l)[(k2 − 2l)− 4(1− l)(k2 − 2)]

[k2(l − 3) + 4l]
.

Next let us considerthe massless scalar-field-invariant setM: there is one equilibrium
set which generalizes the work in [26] to include scalar fields:

(5) KM:

6̃ +62
+ +92 = 1, 1 = Ã = N+ = 8 = 0, 9 6= 0.

This paraboloid, for whichq = 2, generalizes the parabolaK in [26] defined by6̃+62
+ = 1

to include a massless scalar field, and represents Jacobs’ Bianchi type I non-vacuum
solutions [32]. However, the eigenvalues are considerably different from those found in
[26], and so we list them all here (the variables which define the subspaces in which the
corresponding eigendirections reside are included below in curly braces):

2[(1 +6+)±
√

36̃],

{1,N+}
0,

{6+, 6̃}
0,

{6+, 6̃, 9}
3(2− γ ),
{6+, 6̃, 9}

4(1 +6+),

{6+, 6̃, Ã, 9}
1
2

√
6(
√

6 + k9)

{6̃,8}.

(3.12)

3.2. Perfect fluid case,9 = 8 = 0

As mentioned earlier, the perfect-fluid-invariant setF in which9 = 8 = 0 was studied by
Hewitt and Wainwright [26]; hence this subsection generalizes their results by including a
scalar field with an exponential potential. We shall use their notation to label the equilibrium
points/sets. There are five such invariant points/sets. In all of these cases the extra two
eigenvalues associated with9 and8 are (respectively)

− 3
2(2− γ ) < 0, 3

2γ > 0. (3.13)

(1) P(I):

6+ = 6̃ = 1 = Ã = N+ = 9 = 8 = 0.

This equilibrium point, for which� = 1, is a saddle for23 < γ < 2 in F [26] (and is a
sink for 06 γ < 2

3), which corresponds to a flat FRW model.
(2) P±(II):

6+ = − 1
16(3γ − 2), 6̃ = 362

+, 1 = 6+N+,

Ã = 0, N+ = ± 3
8

√
(3γ − 2)(2− γ ), 9 = 8 = 0.

This equilibrium point, for which� = 3
16(6−γ ), is a saddle in the perfect-fluid-invariant

set [26].
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(3) P (VIh):

6+ = − 1
4(3γ − 2), 6̃ = −362

+/l, 1 = 0,

Ã = − 9

16l
(3γ − 2)(2− γ ), N+ = 9 = 8 = 0.

Since6̃ > 0 andÃ > 0, this equilibrium point occurs in the Bianchi-VIh-invariant set
and corresponds to the Collins solution [32], where� = 3

4(2− γ ) + 3
4l (3γ − 2) (and

therefore2
3 6 γ 6 2(−l − 1)/(3− l) and sol 6 −1). In [26] this was a sink inF , but

is a saddle in the extended state space due to the fact that the two new eigenvalues have
values of different sign.
There are also two equilibrium sets, which generalize the work in [26] to include scalar
fields:

(4) L±l :

6̃ = −6+(1 +6+), 1 = 0, Ã = (1 +6+)
2,

N+ = ±
√
(1 +6+)[l(1 +6+)− 36+], 9 = 8 = 0.

For this set� = 0. The local sinks in this set occur when [26]

(a) l < 0 (Bianchi type VIh) for− 1
4(3γ −2) < 6+ < l/(3− l) andl > −(3γ −2)/(2−

γ ) < 0,
(b) l = 0 (Bianchi type IV) for− 1

4(3γ − 2) < 6+ < 0,
(c) l > 0 (Bianchi type VIIh) for − 1

4(3γ − 2) < 6+ < 0.

The additional two eigenvalues for the full system are

1− 26+, −2(1 +6+). (3.14)

Finally, let us considerthe massless scalar-field-invariant setFM:
(5) K:

6̃ +62
+ = 1, 1 = Ã = N+ = 8 = 9 = 0.

This parabola, for whichq = 2, is the special case ofKM for which9 = 0 and corresponds
to the parabolaK in [26]. However, the eigenvalues are considerably different from those
found in [26] and so we list them all here (the variables define the subspaces in which the
corresponding eigendirections reside are included below in curly braces):

2[(1 +6+)±
√

36̃],

{1,N+}
0,

{6+, 6̃}
0,

{9}
3(2− γ ),
{6+, 6̃}

4(1 +6+),

{6+, 6̃, Ã}
3

{8}. (3.15)

We include in table 4 the equilibrium points/sets and corresponding eigenvalues as listed
in [26].

3.3. Scaling solutions

Defining

9S ≡ −
√

3

2

γ

k
, 82

S ≡
3γ (2− γ )

2k2
, (3.16)

and recalling that 0< γ < 2, there are three equilibrium points corresponding to scaling
solutions. Because the scalar field mimics the perfect fluid with the exact same equation of state
(γφ = γ ) at these equilibrium points, one may combine these two ‘fluids’, viaptot = pφ + p,
µtot = µφ + µ, ptot = (γ − 1)µtot ; therefore, all of these equilibrium points will correspond
to exact perfect fluid models analogous to the equilibrium points found in [26].

The flat isotropic FRW scaling solution [29, 30]:
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(1) FS(I):
6+ = 6̃ = 1 = A = N+ = 0, 9 = 9S, 8 = 8S.

The eigenvalues for these points in the extended space, for which� = 1− 3γ /k2 (and
thereforek2 > 3γ ) are

− 3
2(2− γ ), −3(2− γ ), 3γ − 4, 3γ − 2,

1
2(3γ − 2),− 3

4(2− γ )± 3
4

√
(2− γ )(2− 9γ + 24γ /k2).

(3.17)

There are two anisotropic scaling solutions:
(2) AS(II ):

6+ = − 1
16(3γ − 2), 6̃ = 362

+, 1 = 6+N+, Ã = 0,

N+ = ± 3
8

√
(3γ − 2)(2− γ ), 9 = 9S, 8 = 8S.

The eigenvalues for these points, for which� = 3
16(6 − γ ) − 3γ /k2 (and therefore

k2 > 16γ /[6− γ ]), are
3
4(3γ − 2), − 3

2(2− γ ),

− 3
4

[
(2− γ )

±
√
(2− γ )2 − 3

4(2− γ )
{

2(3γ − 2) +
γ (6− γ )

k2

(
k2 − 16γ

6− γ
)
±
√
E1

}]
,

(3.18)

where

E1 ≡
[
2(3γ − 2)− γ (6− γ )

k2

(
k2 − 16γ

6− γ
)]2

+ 8
9(3γ − 2)

γ (6− γ )
k2

(
k2 − 16γ

6− γ
)
.

(3) AS(VI h):

6+ = − 1
4(3γ − 2), 6̃ = −362

+/l, 1 = 0,

Ã = − 9

16l
(2− γ )(3γ − 2), N+ = 0, 9 = 9S, 8 = 8S.

These points occur in the Bianchi-VIh-invariant set (l < 0 since6̃ > 0) for which

� = 3
4(2− γ ) +

3

4l
(3γ − 2)− 3γ /k2

(and therefore−l−1 6 (2− γ )/(3γ − 2) andk2 > 4γ /[(2− γ ) + (3γ − 2)/ l]) and
correspond to the Collins Bianchi VIh perfect fluid solutions [32]. The eigenvalues for
these equilibrium points are

−3

4

[
(2− γ )±

√
(2− γ )2 − 4(3γ − 2)2

(
2− γ
3γ − 2

+
1

l

)]
,

−3

4

[
(2− γ )

±
√
(2− γ )2 − (2− γ )

[
4γ

(
1− 3γ

k2

)
+ (3γ − 2)

(
2− γ
3γ − 2

+
1

l

)
±
√
E2

]]
,

(3.19)

where

E2 ≡
[
4γ

(
1− 3γ

k2

)
− (3γ − 2)

(
2− γ
3γ − 2

+
1

l

)]2

− 128
γ 2

k2
.
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4. Stability of the equilibrium points and some global results

The stability of the equilibrium points listed in the previous section can be easily determined
from the eigenvalues displayed. Often the stability can be determined by the eigenvalues in
the extended state space, otherwise the constraint must be utilized to determine the stability in
the six-dimensional state space (i.e. within the constraint surface). In the cases in which
this is not possible, we must analyse the eigenvalues in the extended seven-dimensional
state space, and the conclusions that can be drawn are consequently limited. Employing
local stability results and utilizing the monotonic functions found in table 3, we are able
to prove some global results. In the absence of monotonic functions, and in the same
spirit as [25, 26], we conjecture plausible results which are consistent with the local results
and the dynamical behaviour on the boundaries and which are substantiated by numerical
experiments.

4.1. The case� = 0

If � = 0 and8 = 0, then the functionW1 in table 3 approaches zero monotonically. The
existence of the monotonic functionW1 implies that the global behaviour of models in the
setM ∪ V can be determined by the local behaviour of the equilibrium points inM ∪ V.
Consequently, a portion of the equilibrium setsK andKM (corresponding to local sources)
represent the past asymptotic states, while the future asymptotic state is represented byLl , or
in the case of Bianchi types I and II, by a point onK.

Therefore, all vacuum models and all massless scalar field models are asymptotic to the
past to a Kasner state, and are asymptotic to the future either to a plane-wave solution (Bianchi
types IV, VIh and VIIh) or to a Kasner state (Bianchi types I and II) or to a Milne state (Bianchi
type V).

If � = 0 and8 6= 0, then the models only contain a scalar field. It was proven in [15]
that all Bianchi models evolve to a power-law inflationary state (represented byPS(I)) when
k2 < 2. If k2 > 2, then, as was shown in [28], a subset of Bianchi models of types V and VIIh

evolve towards negatively curved isotropic models represented by pointsPS(V) andP±S (VII h).
In [18] it was shown that whenk2 > 2 the future state of a subset of Bianchi type VIh solutions
is represented by the pointPS(VI h). It can be seen here that the future state of a subset of
Bianchi type II models is represented by the pointP±S (II ).

Therefore, all scalar field models with� = 0 evolve to a power-law inflationary state if
k2 < 2. If k2 > 2, then the future asymptotic state for all Bianchi type IV, V and VIIh models
is conjectured to be a negatively curved, isotropic model and the future asymptotic state for
all Bianchi type VIh models is conjectured to be the Feinstein–Ibáñez anisotropic scalar field
model [14]. If 2< k2 < 8, then the future asymptotic state for all Bianchi type II models is
the anisotropic Bianchi type II scalar field model, and ifk2 > 8 then the future asymptotic
state is that of a Kasner model. If 2< k2 < 6, then the Bianchi type I models approach a
non-inflationary, isotropic (i.e. the pointPS(I)); if k2 > 6, then they evolve to a Kasner state
in the future.

4.2. The case� 6= 0, 06 γ 6 2
3

If � 6= 0 and 06 γ 6 2
3 then the functionW2 in table 3 is monotonically decreasing to

zero. Therefore, we conclude that the omega-limit set of all non-exceptional orbits (i.e. those
orbits excluding equilibrium points, heteroclinic orbits, etc) of the dynamical system (2.5)–
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(2.11) is a subset ofS(I). This implies that all non-exceptional models with� 6= 0 evolve
towards the zero-curvature spatially homogeneous and isotropic models inS(I) and hence
isotropize to the future. In [23], it was shown that the zero-curvature spatially homogeneous
and isotropic models evolve towards the power-law inflationary model, represented by the
pointPS(I) whenk2 < 3γ or towards the isotropic scaling solution, represented by the point
FS(I), whenk2 > 3γ . UsingW1, we also conclude that the past asymptotic state(s) of all
non-exceptional models (including models inS(I)) is characterized by� = 0. In other words,
matter is dynamicallyunimportantas these models evolve to the past. It was shown in [23]
that all models evolve in the past to some portion ofK orKM (the Kasner models) which are
local sources.

4.3. The case� 6= 0, 2
3 < γ < 2

The following table lists the local sinks for23 < γ < 2.

Table 5. This table lists all of the sinks in the various Bianchi invariant sets for2
3 < γ < 2. A

subset ofKM acts as a source for all Bianchi class B models.

Sink Bianchi type k Other constraints

PS (I) I k2 6 2
PS (VII h)a I k2 = 2

PS (VI−1) III k2 > 2 γ > k2/(k2 + 1), l = −1
L±k (VI−1) III All γ > 1, 6+ = − 1

4

PS (V) V k2 > 2

PS (VIh) VIh k2 > 2 γ > 2k2(1− l)/[k2(l − 3) + 4l]
L±k (VIh) VIh All γ > 4

3 , 6+ < − 1
2

AS(VIh) VIh k2 > 4γ

[(2− γ ) + (3γ − 2)/ l]
l 6 −(3γ − 2)

2− γ

P±S (VII h) VII h k2 > 2 l >
k2

4(k2 − 2)(4− k2)
for 2< k2 6 4

l <
k2

4(k2 − 2)(k2 − 4)
for k2 > 4

a In this caseN+ = 0 (i.e.PS = P±S ) and in fact corresponds to a Bianchi I model.

The functionW3 is monotonically decreasing to zero inB(I)\S(I) andB(V)\S(V). This
implies that there do not exist any periodic or recurrent orbits in these sets and, furthermore,
the global behaviour of the Bianchi type I and V models can be determined from the local
behaviour of the equilibrium points in these sets. We conjecture that there do not exist any
periodic or recurrent orbits in the entire phase space forγ > 2

3, whence it follows that all
global behaviour can be determined from table 5.

We note that a subset ofKM with (1 + 6+)
2 > 36̃, 9 > −√6/k acts as a source

for all Bianchi class B models. Fork2 < 2, PS(I) is the global attractor (sink). From
table 5 we see that there are unique global attractors (both past and future) in all invariant
sets and hence the asymptotic properties are simple to determine. The sinks and sources for a
particular Bianchi invariant set, which may appear in that invariant set or on the boundary
corresponding to a (lower-dimensional) specialization of that Bianchi type, can be easily
determined from table 5 and figure 1 which lists the specializations of the Bianchi class B
models [33].
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Figure 1. Specialization diagram for Bianchi class B models obtained by letting a non-zero
parameter go to zero. A broken arrow indicates the group class changes (from B to A).

The most general models are those of Bianchi types VIh and VIIh. The Bianchi type VIIh
models are of particular physical interest since they contain open FRW models as special cases.
From table 5 and figure 1 we argue that generically these models (with a scalar field) isotropize
to the future, a result which is of great significance. The Bianchi type VIh models are also of
interest since they contain a class of anisotropic scaling solutions that act as attractors for an
open set of Bianchi type B models. We note that generically Bianchi type VIh models do not
isotropize fork2 > 2.

5. Intermediate behaviour and the invariant setS(VI h)

It is also of interest to determine the intermediate behaviour of the models. In order to do
this, we need to investigate the saddles, determine the dimension of their stable submanifolds,
and construct possible heteroclinic sequences. This could then be used, in conjunction with
numerical work, to establish the physical properties of the models. For example, we could
investigate whetherintermediate isotropizationcan occur in Bianchi type VIIh models [34].
There are many different cases to consider depending upon the various bifurcation values and
the particular Bianchi invariant set under investigation. As an example, we shall study the
heteroclinic sequences in the four-dimensional invariant setS(VI h), because it illustrates the
method and because such a study emphasizes the importance of anisotropic scaling solutions.

The subspaceS(VI h), which arises from the restrictionsN+ = 1 = 0 and 362
+ + l6̃ = 0

[25] is, in fact, the class of diagonal Bianchi VIh models and is four dimensional (and was
shown in [24] to illustrate the existence and importance of the anisotropic scaling solutions).
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From the above restrictions, the system of equations (2.5)–(2.11) now reduce to

6′+ = (q − 2)6+ + 2
3lÃ (5.1)

Ã′ = 2(q + 26+)Ã (5.2)

9 ′ = (q − 2)9 − 1
2

√
6k82 (5.3)

8′ = (q + 1 + 1
2

√
6k9)8. (5.4)

We note that the constraint equation (2.16) is automatically satisfied.
The equilibrium points of the system are a subset of those presented in section 3 and we

present those that belong to this subspace and their corresponding eigenvalues in table 6:
From the eigenvalues in table 5 we can study the stability of the equilibrium points and

the qualitative behaviour in this four-dimensional subspace. The bifurcation values leading to
a change in the asymptotic behaviour are

k2 = 2, k2 = 6, k2 = 3γ, s2 = 3γ − 2, s2 = k2(3γ − 2)

(k2 − 3γ )
.

We can see that the possible future asymptotic behaviour is given by points containing a
scalar field, either alone or together with a perfect fluid component in the case of the anisotropic
scaling solution. These possible future asymptotics arePS(I), PS(VI h) andAS(VI h).

5.1. Heteroclinic sequences

The stable and unstable manifolds of the saddle equilibrium points provide a skeleton of special
orbits that play a significant role in determining the dynamics of the models (and in particular,
their intermediate states) [34]. A (finite) heteroclinic sequence is a set of equilibrium points
E0, E1, . . . , En, whereE0 is a local source,En is a local sink and the rest are saddles, such that
there is a heteroclinic orbit which joinsEi−1 toEi for eachi = 1, . . . , n [25]. Below are the
heteroclinic orbits in the class ofS(VI h) models for different parameter ranges. Equilibrium
points in parentheses stand for optional intermediate points. We recall thats2 ≡ 4l/(l − 3)
ands2

0 ≡ k2(3γ − 2)/(k2 − 3γ ). Finally, whenk2 > 6 the Kasner-like ring splits intoKM[A]
(sources) andKM[B] (saddles).

k2 < 2< 3γ

(i) s2 < 3γ − 2

{
KM→ L±k → PS(I)

KM→ P(I)→ L±k → PS(I)

(ii ) 3γ − 2< s2

{
KM→ L±k → P(VI h)→ PS(I)

KM→ P(I)→ P(VI h)→ PS(I)

2< k2 < 3γ

(i) s2 < 3γ − 2

{
KM→ P(I)→ PS(I)→ P±S (VII h)

KM→ P(I)→ L±k → P±S (VII h)

(ii ) 3γ − 2< s2


KM→ L±k → (P (VI h))→ P±S (VII h)

KM→ P(I)→ P(VI h)→ P±S (VII h)

KM→ P(I)→ PS(I)→ P±S (VII h)
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2< 3γ < k2 < 6

(i) s2 < 3γ − 2< s2
0


KM→ PS(I)→ (FS(I))→ P±S (VII h)

KM→ (P (I))→ L±k → P±S (VII h)

KM→ P(I)→ FS(I)→ P±S (VII h)

(ii ) 3γ − 2< s2 < s2
0


KM→ L±k → (P (VI h))→ P±S (VII h)

KM→ PS(I)→ (FS(I))→ P±S (VII h)

KM→ P(I)→ P(VI h)→ P±S (VII h)

KM→ P(I)→ FS(I)→ P±S (VII h)

(iii ) 3γ − 2< s2
0 < s2



KM→ L±k → P±S (VII h)→ AS(VI h)

KM→ L±k → P(VI h)→ AS(VI h)

KM→ PS(I)→ P±S (VII h)→ AS(VI h)

KM→ PS(I)→ FS(I)→ AS(VI h)

KM→ P(I)→ P(VI h)→ AS(VI h)

KM→ P(I)→ FS(I)→ AS(VI h)

3γ < 6< k2

(i) s2 < 3γ − 2< s2
0

{
KM[A] → (KM[B])→ (P (I))→ L±k → P±S (VII h)

KM[A] → (KM[B])→ P(I)→ FS(I)→ P±S (VII h)

(ii ) 3γ − 2< s2 < s2
0


KM[A] → (KM[B])→ L±k → (P (VI h))→ P±S (VII h)

KM[A] → (KM[B])→ P(I)→ P(VI h)→ P±S (VII h)

KM[A] → (KM[B])→ P(I)→ FS(I)→ P±S (VII h)

(iii ) 3γ − 2< s2
0 < s2


KM[A] → (KM[B])→ L±k → P±S (VII h)→ AS(VI h)

KM[A] → (KM[B])→ L±k → P(VI h)→ AS(VI h)

KM[A] → (KM[B])→ P(I)→ P(VI h)→ AS(VI h)

KM[A] → (KM[B])→ P(I)→ FS(I)→ AS(VI h).

Figure 2. Heteroclinic sequences inS(VIh) for s < 3γ < k2 < 6 and 3γ − 2 < s2
0 < s2,

indicating the skeleton of orbits defined by the stable and unstable manifolds of the saddle points.
Note that the anisotropic scaling solutionAS(VIh) is a stable attractor.



4054 A P Billyard et al

Figure 2 can be used to construct sequences of orbits joining equilibrium points starting
at the past attractorKM and ending at the future attractorAS(VI h). For each sequence there
will be a family of orbits that shadow this sequence in the state space.

6. Conclusion

In this paper we have discussed the qualitative properties of Bianchi type B cosmological
models containing a barotropic fluid and a scalar field with an exponential potential. The most
general models are those of type VIh, which include the anisotropic scaling solutions, and
those of type VIIh, which include the open FRW models.

In cases in which we have been able to find monotonic functions we have been able to
prove global results. Otherwise, based on the local analysis of the stability of equilibrium
points and the dynamics on the boundaries of the appropriate state space, we have presented
plausible global results (this is similar to the analysis of perfect fluid models in [25, 26] in
which no monotonic functions were found in the Bianchi type VI and VII invariant sets). In
all cases, however, our results are further justified by numerical experimentation.

Let us summarize the main results:

• All models with k2 < 2 asymptote toward the flat FRW power-law inflationary model
[5, 17], corresponding to the global attractorPS(I), at late times; i.e. all such models
isotropize and inflate to the future.
• FS(I) is a saddle and hence the flat FRW scaling solutions [29, 30] do not act as late-time

attractors in general [22].
• A subset ofKM acts as a source for all Bianchi type B models; hence all models are

asymptotic in the past to a massless scalar field analogue of the Jacobs anisotropic Bianchi I
solutions.
• Fork2 > 2, Bianchi type VIIh models generically asymptote towards an open FRW scalar

field model, represented by one of the local sinksPS(V) orP±S (VII h), and hence isotropize
to the future.
• Fork2 > 2, Bianchi type VIh models generically asymptote towards either an anisotropic

scalar field analogue of the Collins solution [32], an anisotropic vacuum solution (with
no scalar field) or an anisotropic scaling solution [24], corresponding to the local sinks
P±S (VI h), Lk(VI h) orAS(VI h), respectively (depending on the values of a given model’s
parameters, see table 4 for details). These models do not generally isotropize.
• In particular, the equilibrium pointAS(VI h) is a local attractor in the Bianchi-VIh-invariant

set and hence there is an open set of Bianchi type B models containing a perfect fluid and a
scalar field with exponential potential which asymptote toward a corresponding anisotropic
scaling solution at late times.

We should stress that our analysis and results are applicable to a variety of other
cosmological models in, for example, scalar–tensor theories of gravity (which are formally
equivalent to general relativity containing a scalar field with an exponential potential) [32, 36–
38], theories with multiple scalar fields with exponential potentials [38] and string theory
[9, 39].

In future work we shall study spatially homogeneous models with positive spatial curvature
[40] and Bianchi models of type A [41]. However, our ultimate goal is to extend the techniques
used in this paper and study the more interesting (and physically more relevant) case of spatially
inhomogeneous models.
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[32] Collins C B 1971Commun. Math. Phys.23137
[33] MacCallum M A H 1971Commun. Math. Phys.2057
[34] Wainwright J, Coley A A, Ellis G F R andHancock M 1998Class. Quantum Grav.15331
[35] Barrow J D and Mimoso J P 1994Phys. Rev.D 503746
[36] Liddle A R and Wands D 1992Phys. Rev.D 492665



4056 A P Billyard et al

[37] Mimoso J P and Wands D 1995Phys. Rev.D 525612
[38] Liddle A R, Mazumdar A and Schunck F E 1998Phys. Rev.D 58061301
[39] Kaloper N, Kogan I I and Olive K A 1998Phys. Rev.D 577340
[40] Coley A A and Goliath M 1999Qualitative Analysis of Spatially Homogeneous Scalar Field Cosmological

Models with Positive Spatial Curvaturein preparation
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